Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
J Neurosci ; 43(5): 827-845, 2023 02 01.
Article En | MEDLINE | ID: mdl-36526374

Hyperactivation of PI3K/PTEN-mTOR signaling during neural development is associated with focal cortical dysplasia (FCD), autism, and epilepsy. mTOR can signal through two major hubs, mTORC1 and mTORC2, both of which are hyperactive following PTEN loss of function (LOF). Here, we tested the hypothesis that genetic inactivation of the mTORC2 complex via deletion of Rictor is sufficient to rescue morphologic and electrophysiological abnormalities in the dentate gyrus caused by PTEN loss, as well as generalized seizures. An established, early postnatal mouse model of PTEN loss in male and female mice showed spontaneous seizures that were not prevented by mTORC2 inactivation. This lack of rescue occurred despite the normalization or amelioration of many morphologic and electrophysiological phenotypes. However, increased excitatory connectivity proximal to dentate gyrus granule neuron somas was not normalized by mTORC2 inactivation. Further studies demonstrated that, although mTORC2 inactivation largely rescued the dendritic arbor overgrowth caused by PTEN LOF, it increased synaptic strength and caused additional impairments of presynaptic function. These results suggest that a constrained increase in excitatory connectivity and co-occurring synaptic dysfunction is sufficient to generate seizures downstream of PTEN LOF, even in the absence of characteristic changes in morphologic properties.SIGNIFICANCE STATEMENT Homozygous deletion of the Pten gene in neuronal subpopulations in the mouse serves as a valuable model of epilepsy caused by mTOR hyperactivation. To better understand the physiological mechanisms downstream of Pten loss that cause epilepsy, as well as the therapeutic potential of targeted gene therapies, we tested whether genetic inactivation of the mTORC2 complex could improve the cellular, synaptic, and in vivo effects of Pten loss in the dentate gyrus. We found that mTORC2 inhibition improved or rescued all morphologic effects of Pten loss in the dentate gyrus, but synaptic changes and seizures persisted. These data suggest that synaptic dysfunction can drive epilepsy caused by hyperactivation of PI3K/PTEN-mTOR, and that future therapies should focus on this mechanistic link.


Epilepsy , Seizures , Male , Female , Mice , Animals , Mechanistic Target of Rapamycin Complex 2/genetics , Homozygote , Mice, Knockout , Sequence Deletion , TOR Serine-Threonine Kinases/genetics , Epilepsy/genetics , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases
2.
Cell Rep ; 41(5): 111574, 2022 11 01.
Article En | MEDLINE | ID: mdl-36323257

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a negative regulator of AKT/mTOR signaling pathway. Mutations in PTEN are found in patients with autism, epilepsy, or macrocephaly. In mouse models, Pten loss results in neuronal hypertrophy, hyperexcitability, seizures, and ASD-like behaviors. The underlying molecular mechanisms of these phenotypes are not well delineated. We determined which of the Pten loss-driven aberrations in neuronal form and function are orchestrated by downstream mTOR complex 1 (mTORC1). Rapamycin-mediated inhibition of mTORC1 prevented increase in soma size, migration, spine density, and dendritic overgrowth in Pten knockout dentate gyrus granule neurons. Genetic knockout of Raptor to disrupt mTORC1 complex formation blocked Pten loss-mediated neuronal hypertrophy. Electrophysiological recordings revealed that genetic disruption of mTORC1 rescued Pten loss-mediated increase in excitatory synaptic transmission. We have identified an essential role for mTORC1 in orchestrating Pten loss-driven neuronal hypertrophy and synapse formation.


Neurons , Synapses , Animals , Mice , Mice, Knockout , Neurons/metabolism , Synapses/metabolism , PTEN Phosphohydrolase/metabolism , TOR Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Hypertrophy/metabolism
3.
Proc Natl Acad Sci U S A ; 119(15): e2109448119, 2022 04 12.
Article En | MEDLINE | ID: mdl-35394871

Genetic studies of hippocampal granule neuron development have been used to elucidate cellular functions of Pten and Fmr1. While mutations in each gene cause neurodevelopmental disorders such as autism and fragile X syndrome, how Pten and Fmr1 function alone or together during normal development is not known. Moreover, Pten mRNA is bound by the fragile X mental retardation protein (FMRP) RNA binding protein, but how this physical interaction impinges on phosphatase and tensin homolog protein (PTEN) expression is not known. To understand the interaction of PTEN and FMRP, we investigated the dentate gyrus granule neuron development in Pten and Fmr1 knockout (KO) mice. Interestingly, heterozygosity of Pten restored Fmr1 KO cellular phenotypes, including dendritic arborization, and spine density, while PTEN protein expression was significantly increased in Fmr1 KO animals. However, complete deletion of both Pten and Fmr1 resulted in a dramatic increase in dendritic length, spine density, and spine length. In addition, overexpression of PTEN in Fmr1 KO Pten heterozygous background reduced dendritic length, arborization, spine density, and spine length including pS6 levels. Our findings suggest that PTEN levels are negatively regulated by FMRP, and some Fmr1 KO phenotypes are caused by dysregulation of PTEN protein. These observations provide evidence for the genetic interaction of PTEN and FMRP and a possible mechanistic basis for the pathogenesis of Fmr1-related fragile X neurodevelopmental disorders.


Fragile X Mental Retardation Protein , Fragile X Syndrome , PTEN Phosphohydrolase , Animals , Dentate Gyrus/cytology , Dentate Gyrus/growth & development , Disease Models, Animal , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Heterozygote , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurogenesis/genetics , Neurons/metabolism , Neurons/pathology , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism
4.
J Neurosci ; 42(10): 1945-1957, 2022 03 09.
Article En | MEDLINE | ID: mdl-35101965

Phosphatase and tensin homolog (PTEN) is a major negative regulator of the phosphatidylinositol-3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) pathway. Loss-of-function mutations in PTEN have been found in a subset of patients with macrocephaly and autism spectrum disorder (ASD). PTEN loss in neurons leads to somal hypertrophy, aberrant migration, dendritic overgrowth, increased spine density, and hyperactivity of neuronal circuits. These neuronal overgrowth phenotypes are present on Pten knock-out (KO) and reconstitution with autism-associated point mutations. The mechanism underlying dendritic overgrowth in Pten deficient neurons is unclear. In this study, we examined how Pten loss impacts microtubule (MT) dynamics in both sexes using retroviral infection and transfection strategies to manipulate PTEN expression and tag the plus-end MT binding protein, end-binding protein 3 (EB3). We found Pten KO neurons sprout more new processes over time compared with wild-type (WT) neurons. We also found an increase in MT polymerization rate in Pten KO dendritic growth cones. Reducing MT polymerization rate to the WT level was sufficient to reduce dendritic overgrowth in Pten KO neurons in vitro and in vivo Finally, we found that rescue of dendritic overgrowth via inhibition of MT polymerization was sufficient to improve the performance of Pten KO mice in a spatial memory task. Taken together, our data suggests that one factor underlying PTEN loss dependent dendritic overgrowth is increased MT polymerization. This opens the possibility for an intersectional approach targeting MT polymerization and mTOR with low doses of inhibitors to achieve therapeutic gains with minimal side effects in pathologies associated with loss of neuronal PTEN function.SIGNIFICANCE STATEMENT Loss of Pten function because of genetic deletion or expression of mutations associated with autism spectrum disorder (ASD), results in overgrowth of neurons including increased total dendritic length and branching. We have discovered that this overgrowth is accompanied by increased rate of microtubule (MT) polymerization. The increased polymerization rate is insensitive to acute inhibition of mechanistic target of rapamycin (mTOR)C1 or protein synthesis. Direct pharmacological inhibition of MT polymerization can slow the polymerization rate in Pten knock-out (KO) neurons to rates seen in wild-type (WT) neurons. Correction of the MT polymerization rate rescues increased total dendritic arborization and spatial memory. Our studies suggest that phosphatase and tensin homolog (PTEN) inhibits dendritic growth through parallel regulation of protein synthesis and cytoskeletal polymerization.


Autism Spectrum Disorder , Brain , Microtubules , PTEN Phosphohydrolase , Animals , Autism Spectrum Disorder/enzymology , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , Brain/cytology , Brain/enzymology , Brain/metabolism , Female , Humans , Male , Mice , Microtubules/metabolism , Neuronal Plasticity/physiology , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Polymerization , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism
5.
Eur Respir J ; 60(2)2022 08.
Article En | MEDLINE | ID: mdl-34996831

BACKGROUND: Severe asthma is associated with multiple comorbidities, including gastro-oesophageal reflux disease (GORD), which can contribute to exacerbation frequency and poor quality of life. Since epithelial dysfunction is an important feature in asthma, we hypothesised that in severe asthma the bronchial epithelium is more susceptible to the effects of acid reflux. METHODS: We developed an in vitro model of GORD using differentiated bronchial epithelial cells (BECs) from normal or severe asthmatic donors exposed to a combination of pepsin, acid pH and bile acids using a multiple challenge protocol (MCP-PAB). In addition, we analysed bronchial biopsies and undertook RNA sequencing of bronchial brushings from controls and severe asthmatics without or with GORD. RESULTS: Exposure of BECs to the MCP-PAB caused structural disruption, increased permeability, interleukin (IL)-33 expression, inflammatory mediator release and changes in gene expression for multiple biological processes. Cultures from severe asthmatics were significantly more affected than those from healthy donors. Analysis of bronchial biopsies confirmed increased IL-33 expression in severe asthmatics with GORD. RNA sequencing of bronchial brushings from this group identified 15 of the top 37 dysregulated genes found in MCP-PAB treated BECs, including genes involved in oxidative stress responses. CONCLUSIONS AND CLINICAL IMPLICATION: By affecting epithelial permeability, GORD may increase exposure of the airway submucosa to allergens and pathogens, resulting in increased risk of inflammation and exacerbations. These results suggest the need for research into alternative therapeutic management of GORD in severe asthma.


Asthma , Gastroesophageal Reflux , Bronchi/pathology , Epithelium/metabolism , Gastroesophageal Reflux/complications , Humans , Quality of Life , Respiratory Mucosa/metabolism
6.
Nat Genet ; 53(2): 205-214, 2021 02.
Article En | MEDLINE | ID: mdl-33432184

Angiotensin-converting enzyme 2 (ACE2) is the main entry point in airway epithelial cells for SARS-CoV-2. ACE2 binding to the SARS-CoV-2 protein spike triggers viral fusion with the cell plasma membrane, resulting in viral RNA genome delivery into the host. Despite ACE2's critical role in SARS-CoV-2 infection, full understanding of ACE2 expression, including in response to viral infection, remains unclear. ACE2 was thought to encode five transcripts and one protein of 805 amino acids. In the present study, we identify a novel short isoform of ACE2 expressed in the airway epithelium, the main site of SARS-CoV-2 infection. Short ACE2 is substantially upregulated in response to interferon stimulation and rhinovirus infection, but not SARS-CoV-2 infection. This short isoform lacks SARS-CoV-2 spike high-affinity binding sites and, altogether, our data are consistent with a model where short ACE2 is unlikely to directly contribute to host susceptibility to SARS-CoV-2 infection.


Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Epithelial Cells/metabolism , Animals , Binding Sites , Cells, Cultured , Chlorocebus aethiops , Exons , HEK293 Cells , Humans , Interferons/immunology , Protein Binding , Protein Isoforms/genetics , RNA Splice Sites , RNA-Seq , Respiratory System/cytology , Spike Glycoprotein, Coronavirus/metabolism , Transcriptome , Up-Regulation , Vero Cells
7.
Article En | MEDLINE | ID: mdl-35098253

Phosphoinositides are membrane phospholipids involved in a variety of cellular processes like growth, development, metabolism, and transport. This review focuses on the maintenance of cellular homeostasis of phosphatidylinositol 4,5-bisphosphate (PIP2), and phosphatidylinositol 3,4,5-trisphosphate (PIP3). The critical balance of these PIPs is crucial for regulation of neuronal form and function. The activity of PIP2 and PIP3 can be regulated through kinases, phosphatases, phospholipases and cholesterol microdomains. PIP2 and PIP3 carry out their functions either indirectly through their effectors activating integral signaling pathways, or through direct regulation of membrane channels, transporters, and cytoskeletal proteins. Any perturbations to the balance between PIP2 and PIP3 signaling result in neurodevelopmental and neurodegenerative disorders. This review will discuss the upstream modulators and downstream effectors of the PIP2 and PIP3 signaling, in the context of neuronal health and disease.

9.
Tissue Barriers ; 4(3): e1206378, 2016.
Article En | MEDLINE | ID: mdl-27583193

The bronchial epithelium and underlying fibroblasts form an epithelial mesenchymal trophic unit (EMTU) which controls the airway microenvironment. We hypothesized that cell-cell communication within the EMTU propagates and amplifies the innate immune response to respiratory viral infections. EMTU co-culture models incorporating polarized (16HBE14o-) or differentiated primary human bronchial epithelial cells (HBECs) and fibroblasts were challenged with double-stranded RNA (dsRNA) or rhinovirus. In the polarized EMTU model, dsRNA affected ionic but not macromolecular permeability or cell viability. Compared with epithelial monocultures, dsRNA-stimulated pro-inflammatory mediator release was synergistically enhanced in the basolateral compartment of the EMTU model, with the exception of IL-1α which was unaffected by the presence of fibroblasts. Blockade of IL-1 signaling with IL-1 receptor antagonist (IL-1Ra) completely abrogated dsRNA-induced basolateral release of mediators except CXCL10. Fibroblasts were the main responders to epithelial-derived IL-1 since exogenous IL-1α induced pro-inflammatory mediator release from fibroblast but not epithelial monocultures. Our findings were confirmed in a differentiated EMTU model where rhinovirus infection of primary HBECs and fibroblasts resulted in synergistic induction of basolateral IL-6 that was significantly abrogated by IL-1Ra. This study provides the first direct evidence of integrated IL-1 signaling within the EMTU to propagate inflammatory responses to viral infection.


Cell Communication , Cellular Microenvironment , Epithelial Cells/metabolism , Fibroblasts/metabolism , Interleukin-1alpha/metabolism , Respiratory Mucosa/metabolism , Capillary Permeability , Cell Line , Cells, Cultured , Chemokine CXCL10/metabolism , Epithelial Cells/virology , Fibroblasts/virology , Humans , Respiratory Mucosa/cytology , Respiratory Mucosa/virology , Rhinovirus/pathogenicity , Signal Transduction
...